Cultured human hepatocytes. Evidence for metabolism of low density lipoproteins by a pathway independent of the classical low density lipoprotein receptor.

نویسندگان

  • S B Edge
  • J M Hoeg
  • T Triche
  • P D Schneider
  • H B Brewer
چکیده

Studies of low density lipoprotein (LDL) metabolism in nonhuman model systems have indicated that the mammalian liver has dual mechanisms for the uptake and regulation of the concentration of plasma LDL. Heretofore, direct evaluation of lipoprotein uptake mechanisms in human hepatocytes has not been possible. In order to compare hepatocyte LDL uptake with fibroblast LDL metabolism, human hepatocytes were isolated and cultured from small biopsy specimens obtained from normolipidemic and homozygous familial hypercholesterolemic patients. Cells cultured in serum-free culture medium retained the morphological and biochemical characteristics of hepatocytes for at least 7 days. The uptake and degradation of LDL by hepatocytes was compared to that of the cultured human fibroblasts. Like fibroblasts, hepatocytes bound, internalized, and degraded LDL. In both cell types, uptake approached saturation at a concentration of 50 micrograms of LDL protein/ml. Competition for LDL binding by LDL, high density lipoprotein, and modified LD revealed that the hepatocyte binding was specific for LDL. Cellular cholesterol loading by incubation in LDL-enriched culture medium resulted in diminished LDL uptake in both cell types. Chemical modification of LDL by acetoacetylation, acetylation, and reductive methylation abolished LDL uptake and degradation by fibroblasts. However, hepatocytes bound and degraded the modified LDL at 30-50% the level of native LDL. Homozygous familial hypercholesterolemic hepatocytes were devoid of the LDL receptor pathway but metabolized native LDL to the extent observed with modified LDL uptake by normal hepatocytes. In contrast to the classic LDL receptor pathway, the second or alternate pathway does not lead to regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity. These findings indicate the presence of two separate pathways of LDL uptake in human hepatocytes which have different effects on hepatocytic cholesterol metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Familial Hypercholesterolemia in Iran: A Novel Frameshift Mutation in Low Density Lipoprotein Receptor (LDLR) Gene

  Background and Objective: Familial hypercholesterolemia (FH) is an autosomal trait, which is caused by mutations in Low Density Lipoprotein Receptor (LDLR) gene. FH penetrance is about 100% and worldwide prevalence for heterozygous subjects is almost 1 in 500 and for homozygous 1 in 1,000,000. The patients are at risk of premature coronary heart disease (CHD) due to defective LDLR a...

متن کامل

Lysophosphatidylcholine metabolism and lipoprotein secretion by cultured rat hepatocytes deficient in choline.

The metabolism of lysophosphatidylcholine was studied in cultured rat hepatocytes deficient in choline and methionine. Even though the cells were defective in phosphatidylcholine biosynthesis, the albumin-stimulated release of lysophosphatidylcholine (1.9 nmol/h per mg of cellular protein) was similar to that in hepatocytes supplemented with choline. Albumin also stimulated (1.4-fold) the relea...

متن کامل

Pharmacological Action of Mentha piperita on Lipid Profile in Fructose-Fed Rats

Cardiovascular diseases with an incidence of approximately 50% are the main causes of death in most advanced countries and an increasing trend in the developing world as well. The World Health Organization estimates that 12 million people per year worldwide die from cardiovascular diseases. Cardiovascular diseases are becoming an increasing problem worldwide and hypercholesterolemia has been co...

متن کامل

Effects of Lycopene on the Susceptibility of Low-Density Lipoproteins to Oxidative Modification

The intake of antioxidants intake has been reported to be inversely associated with the incidence of coronary artery disease. To clarify the possible role of lipophilic antioxidants in prevention of atherosclerosis, we investigated the effects of lycopene on the susceptibility of low-density lipoprotein (LDL) to oxidative modification. In this study, “lycopene” was added to plasma and incubated...

متن کامل

Catabolism of low density lipoproteins by perfused rabbit livers: Cholestyramine promotes receptor-dependent hepatic catabolism of low density lipoproteins (hepatic low density lipoprotein receptor/low density lipoprotein metabolism/hypercholesterolemia/casein diet/high density lipoprotein

Rabbits fed a wheat starch/casein diet develop a marked hypercholesterolemia accompanied by a decrease in the number of EDTA-sensitive binding sites on plasma membrane fractions of the liver for low density lipoproteins (LDL) and 13migrating very low density lipoproteins [Chao, Y.-S., Yamin, T.T. & Alberts, A. W. (1982)J. BioL Chem., in press]. Inclusion of 1% cholestyramine resin in this diet ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 261 8  شماره 

صفحات  -

تاریخ انتشار 1986